2024 CARBON FOOTPRINT CALCULATION - BIENNIAL MID-CYCLE UPDATE REPORT

Final version

1 November, 2025

Table of Content

1	ABRREVIATIONS	2
2	INTRODUCTION & BACKGROUND	3
3	SCOPE & BOUNDARIES	4
4	LIMITATIONS	5
5	METHO DOLOGY	6
6	RESULTS & DISCUSSION	7
7	NEXT STEPS, TIMELINE	13
8	FINAL REMARKS	13
9	ANNEX I	16
10	ANNEX II	17
11	KEY RESOURCES	18

1 ABRREVIATIONS

CCTF UIAA Climate Change Taskforce

COM UIAA Commission

EC UIAA Executive Committee

EUMA European Mountaineering Association

GA UIAA General Assembly

GHG Greenhouse Gas

IFMGA International Federation of Mountain Guides Associations

ISF International Skyrunning Federation

MB UIAA Management Board

MPC UIAA Mountain Protection Commission

RtM UIAA Respect the Mountains
IOC International Olympic Committee
ISA International Slackline Association

IUCN International Union for Conservation of Nature

PAX Persons/People SAC Swiss Alpine Club

SLH UIAA Safety Label Holder

SSC Sustainable Summits Conference

UIMLA Union of International Mountain Leader Associations

UNFCCC United Nations Framework Convention on Climate Change

WG Working Group

2 INTRODUCTION & BACKGROUND

This report provides the UIAA's 2024 carbon footprint results as part of its new biennial reporting cycle (previously: annual reporting cycle).

Following the detailed 2023 Carbon Footprint Report – which included a full recalculation and methodological review – this 2024 report serves as a biennial mid-cycle update. It focuses on recalculating the primary emission category of air travel for the two primary UIAA meetings (GA, Spring Meeting) as well as UIAA-sanctioned Ice Climbing events based on 2024 participation figures. Other categories (office infrastructure, contractor emissions, air travel emissions of UIAA internal events other than the two mentioned above, etc.) remain as reported in 2023 and will be fully recalculated in the next main report for 2025.

This report outlines the results for the calendar year 2024 of the UIAA's carbon footprint, which is in response to our signed commitment in early 2019 and participation under the United Nations Framework Convention on Climate Change (UNFCCC) Sports for Climate Action initiative. As a participant and signatory to this initiative, the UIAA is also expected to follow a process including signing a pledge, done in September 2022, to reach (net)-zero by 2040. As part of this process, and to maintain signatory status, annual public carbon emission reports are expected to be submitted from 2021 onwards. As a participant and signatory in this initiative, the UIAA is required and expected to adhere to 5 principles (see here), these being:

Principle 1: Undertake systematic efforts to promote greater environmental responsibility;

Principle 2: Reduce overall climate impact;

Principle 3: Educate for climate action;

Principle 4: Promote sustainable and responsible consumption;

Principle 5: Advocate for climate action through communication.

Many carbon emission reduction measures, such as travel policies to reduce CO₂ emissions, promote the principle of "avoid, reduce, compensate" in that order. The UIAA, through the support and participation of its Mountain Protection Commission (MPC) and the UIAA Climate Change Task Force (CCTF), has now published such a policy – the UIAA internal Climate Action Plan - as a step in its fulfilment of the 5 principles set out by the UNFCCC. A final version of the UIAA internal Climate Action Plan has been presented to the UIAA General Assembly in October 2024, in line with the UIAA Sustainability Charter and the UIAA's next strategic plan 2025-2028.

UIAA Resources:

<u>UIAA on climate change and action</u> <u>UIAA internal climate action plan</u> <u>UIAA Carbon Footprint Reports</u>

<u>UIAA Sustainability Charter</u> <u>UIAA Strategic Priorities 2025-2028</u>

3 SCOPE & BOUNDARIES

This is the seventh annual carbon footprint calculation of the UIAA, and the first mid-cycle update as we adjust to a biennial cycle for the release of a report with fully recalculated footprint results. This 2024 edition succeeds the reports for each of the following calendar years:

- 2018 (UIAA baseline year)
- 2019
- 2020
- 2021
- 2022
- 2023

Direct and indirect emissions associated with the UIAA's organizational activities were considered within the scope of the calculation and reporting. The UNFCCC <u>Green House Gas (GHG) Protocol</u> terminology, which many organizations use as a measuring and reporting standard, differentiates between Scope 1, 2 and 3 emissions, these being:

- Scope 1: direct emission caused by fuel combustion of owned vehicles, machines, and devices.
- Scope 2: indirect emissions from purchasing energy, in particular electricity, steam, heat, or cooling.
- Scope 3: indirect emissions from upstream and downstream activities, such as travel, purchased goods and services.

Scope 1 – The UIAA does not own vehicles, machines, or devices, thus, no direct emissions are associated with the UIAA's operations under this scope category.

Scope 2 - The information and data relating to energy use and infrastructure at the UIAA Office is provided by the Swiss Alpine Club (SAC) with whom offices are shared. Office infrastructure emissions unchanged since 2023 (following also in this case the SAC's biennial reporting cycle for office infrastructure emissions; updated figures will therefore be included in the UIAA's 2025 report).

Scope 3 - Air travel emissions estimated by scaling 2023 values of our currently largest variable impact category (delegate travel to UIAA Spring meetings and General Assembly, air travel of athletes to and from World Series Ice Climbing Events) to reflect the change in total participation numbers (delegates, athletes) and event locations (delegates).

In accordance with previous years, the UIAA 2024 carbon footprint calculation does not include indirect emissions associated with other ancillary goods, resources, and services

provided at UIAA events and meetings, such as origin and travel of goods and resources, electricity, heating, infrastructure, catering, spectatorship, etc. that are associated with the venues of those events and meetings.

The intention is to start gathering this information from event organizers from 2025 onwards, following a review of the scope of the UIAA's future emissions reporting by its Climate Change Taskforce.

With the significant increase in virtual meetings within the UIAA community in recent years, future carbon footprint reports should also highlight the impact of our increasingly virtual lifestyles and the emissions caused by virtual meetings.

Since carbon dioxide (CO_2) is by far the primary contributor to global warming – about 75 per cent – the global warming potential of GHGs are measured relative to the mass of CO_2 and are thus expressed as CO_2 equivalent (CO_2 -eq). The tool used to determine this year's footprint calculates CO_2 equivalent emissions.

4 LIMITATIONS

The 2024 carbon footprint builds on the same methodological foundation as the 2023 full report. As in 2023, the main limitations relate to:

- (1) the assumption of air travel as the primary transport mode for delegates and athletes,
- (2) the lack of local (ground) transport data,
- (3) limited information on contractor-related emissions, and
- (4) the internal (non-audited) nature of the calculation.

Additionally, 2023 already noted that airport origins were estimated by country, which introduces some location-based uncertainty.

In 2024, one further limitation applies: *no individual travel itineraries were recalculated for this year.*

Instead, 2024 air travel emissions were estimated by *adjusting the 2023 results* for the two categories with the largest variability and impact:

- 1. UIAA Meeting Delegates Emissions were scaled according to:
 - The change in number of participants for the 2024 General Assembly and Spring Meeting
 - The meeting location (Europe vs. intercontinental)
 - The type of travel (long-haul, regional/short-haul, or overland)
- 2. *Ice Climbing Athletes* Emissions were scaled proportionally to the change in the number of athletes participating in the 2024 World Cups and Youth World Championships combined.

These two categories together represent the **largest contributors to UIAA's travel footprint** and the most significant year-to-year variation.

All other categories – including Commission meetings, which took place at similar locations with nearly identical participation – were assumed to have emissions comparable to 2023.

Starting in 2025, delegate travel data to UIAA events will be collected more systematically, and venue-related emissions will be integrated, leading to a more comprehensive footprint.

5 METHODOLOGY

The 2024 carbon footprint is presented as a *Biennial Mid-Cycle Update*, following the full calculation completed for 2023.

In these "update years," the UIAA applies a simplified methodology: instead of recalculating every single trip and energy use category, the 2023 verified data are used as a baseline, updating only those categories where significant changes occurred.

5.1.1 2024 Mid-Cycle Approach: Details

Office Energy Use (Scope 2)

Office energy consumption remains unchanged from 2023. The office setup and reporting follow the Swiss Alpine Club's biennial cycle, so no new data were collected for 2024.

Delegates' Travel to Internal UIAA Meetings (Scope 3)

Travel emissions for internal UIAA meetings were kept at 2023 levels, except for the two largest gatherings – the Spring Meeting and the General Assembly – which were recalculated based on 2024 participation.

- Spring Meeting 2024 (Bariloche):
 Instead of recalculating every individual itinerary, we used a proportional scaling method. Average per-passenger CO₂ emissions were derived from the fully calculated 2023 Spring Meeting (Leeds), separated by flight type (long-haul and short-haul). These factors were then multiplied by the number of participants in each category for Bariloche 2024. Overland travelers were assumed to contribute negligible air-travel emissions.
- General Assembly 2024 (Malta):
 Total emissions were scaled in proportion to the number of participants compared to
 Trabzon 2023. This approach assumes that the travel pattern remained broadly similar, as both events were held in Europe.

Ice Climbing World Series Athletes' Travel (Scope 3)

Athlete travel emissions were adjusted proportionally to the change in the number of participants between 2023 and 2024, combining both the World Cups and the Youth World Championships. The average number of athletes per event in 2023 was used as a baseline, scaled up or down to reflect the 2024 participation and event count.

Other Scope 3 Categories

Other indirect emissions – such as those from contractors, catering, venue infrastructure, or local travel – remain at their 2023 values, as no significant changes were identified.

Illustration 1: Outline of biennial mid-cycle emissions calculation methodology

This ensures year-to-year comparability while reducing the reporting burden for interim years.

A full recalculation will be carried out in 2025 to include all categories and updated event-specific data.

6 RESULTS & DISCUSSION

The total CO_2 emissions generated by the UIAA in 2024 are estimated at **274.39 tonnes**. This compares to:

- 240.51 t in 2023
- 209.48 t in 2022
- 12.08 t in 2021 (Covid-affected year)
- 146.50 t in 2020
- **353.33 t** in 2019
- 365.56 t in 2018 (UIAA baseline year)

Year-on-Year Trends

Emissions in 2024 increased by ~14% compared to 2023, mainly reflecting more extensive air travel by delegates to the General Assembly (Malta) and the Spring Meeting (Bariloche). Despite this rise, 2024 emissions remain ~25% lower than the 2018 baseline year, and 2023 emissions were ~30% below 2018.

This shows that even though emissions have risen steadily since the pandemic, they still remain well below pre-2020 levels.

Scope of Calculation

This Biennial Mid-Cycle Update keeps office emissions (Scope 2) and other Scope 3 categories constant at 2023 values, in line with the agreed methodology. The two major updated categories are, as mentioned, points 3 and 4 below.

The four main sources of emissions included in the 2024 calculation are:

- 1. Office infrastructure (Scope 2)
- 2. Delegate air travel to commission meetings other than during GA and Spring meeting (Scope 3)
- 3. Delegate air travel to the General Assembly and Spring Meeting (Scope 3)
- 4. Athlete air travel to World Series and Youth World Championships (Scope 3)

Categories (3) and (4) contribute the largest share and are also the most variable year-toyear, which is why they were recalculated for this update.

	TOTAL Tonnes of CO ₂ emissions generated	2018	2019	2020	2021	2022	2023	2024 Est.	In % for 2024 Est
(1)	Office Infrastructure	2.17	2.99	2.22	1.17	3.22	1.05	1.05 ¹	0.38%
(2)	Commission Meetings other than GA or Spring Meeting related	See 2018 (UIAA baseline year)	See 2019	See 2020	See 2022	See 2022	44.28	44.28 ²	16.14%
(3)	Delegates to GA and Spring meeting	See 2018 (UIAA baseline year)	See 2019	See 2020	See 2022	See 2022	66.81	107.25 ³	39.09%
(4)	Athletes' Travel	153.59	Covid	Covid	5.28	64.33	129.42	121.81 4	44.39
	Total: Tonnes of CO ₂ emissions generated	365.56	353.33	146.5	12.08	209.48	240.51	274.39	100%

Table 1 – ALL CO₂ Emissions generated through the UIAA

Drivers of Change in 2024

¹ The information and data relating to energy use and infrastructure at the UIAA Office is provided by the Swiss Alpine Club (SAC) with whom offices are shared. Office infrastructure emissions unchanged since 2023 (following the SAC's biennial reporting cycle for office infrastructure emissions).

² Kept at 2023 levels

³ See Section 6.1.1

⁴ See Section 6.1.2

The main driver of the higher 2024 footprint was the relocation of the Spring Meeting to Bariloche, Argentina, requiring a much higher proportion of long-haul flights. Athlete travel emissions slightly decreased compared to 2023, due to marginally lower average participation per event, even though the cumulative number of athletes that participated in at least one event increased.

Further detail:

- Ice Climbing World Series:
 - 2023: Four World Ice Climbing events, in South Korea, France, Switzerland and Finland. Overall, 180 athletes took part in at least one event, with an average participation of 84 athletes per event.
 - 2024: Also, four World Level events, happening in South Korea, Switzerland, Canada and France. Overall, 201 athletes took part in at least one event, with an average participation of 80 athletes per event.

Future of Ice Climbing

- 2023 and 2024: The "Future of Ice Climbing" event, held in Champagny, involved approximately 15 participants per event, most of whom travelled overland.
- Given the very small size of this group relative to total athlete participation (<5% in both years) and the negligible share of air travel emissions, the event has been excluded from the 2024 air-travel calculation. This approach is consistent with the UIAA's focus on material categories in its Biennial Mid-Cycle Update and avoids overstating air-travel emissions for this group.

· Spring Meeting:

- 2023 (Leeds, UK): 30 people attended the joint Management & Executive Board and Commission Presidents' Spring meeting. Of these, 4 travelled overland, 5 took long-haul flights, and 21 flew short-haul within Europe.
- 2024 (Bariloche, Argentina): 27 individuals attended the spring meeting, of which 2 travelled overland, 17 took a long-haul flight, and 8 flew shorthaul within the Americas.

General Assembly:

- 2023: GA was held Trabzon, Türkiye with 102 people attending (of which 10 travelled overland).
- 2024: GA was held in Malta with 139 people attending.

6.1 UIAA Commission & Delegate Airplane Travel

In this Biennial Mid-Cycle Update, the UIAA has simplified its reporting on air-travel emissions. Instead of recalculating every individual itinerary for every meeting, the **2023 verified emissions data** were used as a **baseline** and adjusted only where major changes occurred in 2024.

Focus on Key Events

For 2024, air-travel emissions for UIAA internal meetings and events were primarily influenced by two major gatherings:

- The General Assembly (GA)
- The joint Spring Meeting of the Management Board, Executive Committee, and Commission Presidents

These events were selected for recalculation because:

- They represent the highest concentration of intercontinental and regional flights, and
- The Spring Meeting location changed significantly moving from Europe (Leeds, UK) in 2023 to Bariloche, Argentina in 2024 a shift that required far more long-haul travel than other Commission meetings, which remained in their 2023 patterns.

Emissions Impact

In 2023, delegate air-travel emissions for these two events totaled 66.81 tonnes of CO_2 . For 2024, the adjusted calculation results in 107.25 tonnes of CO_2 – an increase of approximately 60% compared to 2023.

This rise is mainly due to the significantly greater proportion of intercontinental flights required for participants to attend the Spring Meeting in Bariloche.

Why This Matters

Because these two events account for the majority of emissions from internal UIAA governance meetings, recalculating them captures the real change in the UIAA's footprint for 2024 and therefore allows us to reflect such change in this mid-term report.

6.1.1 General Assemblies: Details

We used a proportional scaling method rather than a full itinerary recalculation. Total emissions for the 2024 GA in Malta were scaled in proportion to the number of participants to the GA in Trabzon in 2023.

General Assembly	Total Participants (incl. Commission pre-meetings)	Total Participants with Flights	Tonnes of CO ₂ emissions generated through airplane travel of this group
Trabzon, Türkiye, 2023	102	92	53.43
Malta, 2024	139	139	72.82 ^{5 6}

2023 GA Delegates' Air travel emissions × (2024 GA Delegates ÷ 2023 GA Delegates)

2024 GA Delegates' Air Travel Emissions = 53.43 tonnes × (139 Delegates ÷ 92 Delegates) = 72.82 tonnes

⁵ 2024 GA Delegates' Air Travel Emissions =

⁶ In numbers:

Subset of Table 3 – Zoom-in on CO_2 Emissions generated through the General Assembly in Malta 2024 and Trablazon 2023.

6.1.2 Spring Meetings: Details

We used a proportional scaling method rather than a full itinerary recalculation. We derived per-passenger emission factors from the verified 2023 Spring meeting (long-haul; short-haul) and applied these to the 2024 counts by flight type.

Spring Meeting	Total Participants	Long-Haul	Short-Haul	Overland Travel
Spring Meeting	Total Faiticipants	Long-naui	Short-maur	Overland Travel
	9	Spring Meeting 2023	(Leeds, UK)	
Participants and their flights	30	5	21 (Europe)	4
Tonnes of CO ₂ emissions generated through airplane travel of this group	13.38	10.10	3.28	0
Per Person average CO ₂ emissions	1.03	2.02	0.156	0
	Spring Mee	ting 2024 (Bariloche,	Argentina): Estimates	
Participants and their flights	27	17	8 (Americas)	2
Tonnes of CO ₂ emissions generated through airplane travel of this group	34.43	34.34	1.25	0

Subset of Table 3 – Zoom-in on CO_2 Emissions generated through the 2024 Spring Meetings in Leeds (UK) and Bariloche (Argentina)

A full itinerary-based calculation will be carried out again in 2025.

6.2 Athletes' Travel

"Athletes" of the UIAA are all those competing in international UIAA Sports Events, notably the UIAA Ice Climbing World Cups, the UIAA Ice Climbing World Championships, the UIAA Ice Climbing Youth World Championships and the UIAA Ice Climbing Combined World Championships.

ATHLETES	2018	2021	2022	2023	2024 Est.
Number of people participating in at least one event	232	64	152	180	201
Average Number of Athletes per Event	See 2018 (UIAA baseline year)	See <u>2022</u>	See <u>2022</u>	84	80
Number of World Series events within calendar year	6 total 1 Saas Fee 1 Rabenstein 1 Hohhot 1 Cheongsong 1 Kirov 1 Malbun	2 total 1 Tyumen, 1 Kirov	2 total 2 Saas-Fee	4 total 1 Cheongsong, 1 Champagny, 1 Saas-Fee, 1 Oulu	4 total 1 Cheongsong, 1 Saas Fee, 1 Edmonton 1 Champagny
Number of Participant per World Series Event:	N/A	N/A	N/A	Cheongsong: 88 Champagny: 94 Saas-Fee: 101 Oulu: 52	Cheongsong: 87 Champagny:50 Saas Fee: 103 Edmonton: 77
Future of Ice Climbing ⁷				Champagny: 15	Champagny: 15

_

⁷ The "Future of Ice Climbing" event (≈15 participants each for 2023 and 2024) is excluded from the air-travel calculation as most participants travelled overland and its contribution to overall emissions is immaterial (est. <2% of athlete travel emissions).

Tonnes of CO ₂ emissions generated through airplane travel of this group	5.28	64.33	129.42	121.81 ^{8 9}
---	------	-------	--------	-----------------------

Subset of Table 3 – Zoom-in on CO_2 Emissions generated through Athletes attending UIAA Ice Climbing World Tour events

Arguably, the travel of athletes is an indirect environmental impact caused by UIAA supported (or hosted) events. The main reason why their footprint is included in the overall UIAA carbon footprint calculation, is because these events count towards core UIAA activities and are branded accordingly, which is highly visible on athletes' bibs, banners around the venue, etc.

7 NEXT STEPS, TIMELINE

The 2025 UIAA Carbon Footprint report will contain a full recalculation of all relevant categories, as well as contain additional refinements and precision relative to earlier reports, including a first strategic approach towards the purchase of carbon offsets. Specifically, the following categories are planned to offer additional precision:

- Delegate travel: Data collection to be collected via event registration
- Local transport and venue energy and catering data for UIAA events.

As a next step beyond the above, we plan to contract an external audit of the applied methodology once standardized

Going forward, the UIAA Carbon Footprint report will continue to be published in biennial cycles. The 2025 report will present a fully recalculated and refined UIAA Carbon Footprint, while the next mid-cycle update – similar to the present one – is due in 2026.

8 FINAL REMARKS

The total UIAA CO_2 emissions for 2024 are estimated at 274.39 tonnes, compared to 240.51 tonnes in 2023, 209.48 tonnes in 2022, and 365.56 tonnes in 2018, the UIAA's baseline year.

2023 Athlete Air travel emissions ×

(2024 Average Number of Athletes per Event x 2024 Number of Events) ÷

(2023 Average Number of Athletes per Event x 2023 Number of Events)

2024 Athlete Air Travel Emissions = 129.42 tonnes × (80 Athletes x 4 Events)÷ (84 Athletes x 4 Events) = 121.81 tonnes

⁸ 2024 Athlete Air Travel Emissions =

⁹ In numbers

These figures should not be interpreted as a simple year-to-year trend. Each year's footprint reflects different conditions – including the number of delegates, meeting locations, and event formats – all of which significantly influence emissions.

As this report shows, both distance and participation levels play a crucial role:

- Remote locations increase emissions per delegate because of longer flights.
- Centrally located events attract more participants, which can increase total emissions despite shorter travel distances.

These findings confirm that *event design, location choice, and participation strategy* remain the most powerful levers for managing the UIAA's carbon footprint.

Climate Action Plan and Reduction Pathway

The UIAA follows the recognised principle of "avoid, reduce, compensate", in that order, to minimise its climate impact.

In late 2024, with the support of its Mountain Protection Commission and Climate Change Task Force, the UIAA published:

- a UIAA-internal Climate Action Plan, and
- a companion plan for member federations,

both aligned with the five principles of the UNFCCC Sports for Climate Action Framework.

Key actions identified in the plan include:

- Avoid & Reduce:
 - o Prioritising hybrid and virtual participation to reduce travel demand
 - Choosing meeting locations that minimise total travel distances
 - Reviewing event formats to consolidate travel and avoid unnecessary trips
- Measure & Monitor:
 - From 2025, systematically collecting delegate travel data and integrating venue-related emissions into the annual calculation
 - Using the biennial reporting cycle to monitor trends and evaluate progress
- Compensate:
 - Investigating credible and transparent offset mechanisms for unavoidable emissions

Looking Ahead – Neutrality by 2040

The UIAA has set the ambitious target of achieving climate neutrality by 2040. Current progress indicates that this goal remains realistic but will require sustained action, particularly in:

- Reducing emissions from air travel, the largest contributor to the UIAA footprint
- Supporting member federations in aligning their own climate strategies with UIAA's objectives
- Scaling up mitigation measures to keep overall emissions on a downward trajectory

The combination of regular monitoring, targeted interventions, and collaboration with member federations will allow the UIAA to stay on course and make timely adjustments. Tracking the most emission-intensive activities and consistently applying the avoid—reduce—

compensate hierarchy will be critical to ensuring that the 2040 neutrality goal remains within reach.

More information available here: https://www.theuiaa.org/climate-change/

9 ANNEX I

Table 2 - CO₂ Emissions generated through UIAA Office Infrastructure (2023 Status, actuals)

	2018	Tonnes of CO2	2021	Tonnes of CO2	2022	Tonnes of CO2	2023	Tonnes of CO2
Area of office infrastructure space, in square meters	35,7		27,73	ı	27,73	1	27,73	ı
Nbr of staff members	6 (working as 4.2 pax incl. 1 pax remote)	,	6 (working as 4.2 pax incl. 1 pax remote)	1	6 (working as 4.2 pax incl. 1 pax remote)	1	6 (working as 4.2 pax incl. 1 pax remote)	1
Electricity	3°023 in kWh at a factor of 0.0140 kgCO2e/kWh	0,04	1,053.9 kWh at a factor of 0 kgCO2e/kWh, because 100% Ökostrom	0	769 kWh at a factor of 0 kgCO2e/kwh, because 100% Ökostrom	0	476 kWh at a factor of 0 kgCO2e/kwh, because 100% Ökostrom	0
Other heating systems:	141,200 kg or L District Heating	00'0	2,176 kWh at a factor of 46 kg CO2-eq per MWh district heating	1,00	1,709 kWH at a factor of 44 kg CO2-eq per MWh district heating	0,34	1,736 kWh at a factor of 31 kg CO2-eq per MWh district heating	0,53
	(Ground Source Heat Pump)		(Ground Source Heat Pump)		(Ground Source Heat Pump)		(Ground Source Heat Pump)	
	263 pages b/w – CHF 0.10 pp		5 pages b/w - CHF 0.10 pp		5 pages b/w - CHF 0.10 pp	·		
Printing	8 colour – CHF 0.20 pp (Adding up to a total cost of EUR 26)	0,01	CHF 0.20 pp (adding up to total cost of EUR 6.00)	Negligeable	CHF 0.20 pp (adding up to total cost of EUR 6.00)	Negliable		Negligeable
Cost computers and IT equipment	CHF 4,250.00	2,12	CHF 436,00	0,17	CHF 7.134	2,88	CHF 1.234,00	0,52
Waste (Abfall)							41 kg	
Total Office Infrastructure Footprint		2,17		1,17		3,22		1,05

10 ANNEX II

Table 3 - CO_2 Emissions generated through UIAA delegates' Travel by Plane (2023 Status, actuals)

S	53,43	14,83	0	6,93	162,08	0	2,09	0	0	0	0	0,1	239.46
CO2, tonne													
Guests (incl. CO2, Observers) tonnes	3,16	0,5			1,31	0	0	0	0	0	0	0	4.97
Spoods			,				1,92	0	0	0	0	0	1.92
	- 0	- 0	- '	3,65	- 0	- 0	0	0	0	0	0	0	365
Accredited Ma Lab er	0	0	-		0	0	0	0	0	0	0	0	C
Production Accredited Manufactur Crew Lab er	7,0	0	- 1	-0	9,25	0	0	0	0	0	0	0	6 6
Athletes C	0			0	129,42	0	0	0	0	0	0	0	129.42
	0	- 0	1	0	17,5	0	0	0	0	0	0	0	17.5
COM correspond ing member Officials	2,18	0	1	0,37	0	0	0	0	0	0	0	0	2.55
	2,53	1,45	1	2,91	0	0		0	0	0	0	0	6.89
COM full UIAA Court members	0,46	0,12	1	0	0	0	-0	0	0	0	0	0	0.58
Unit Members U	0,42	0,25	1	0	0	0	0	0	0	0	0	0	29'0
Honorary U Members N	0,46	0		0	0	0	0	0	0	0	0	0	0.46
GA delegates/ H MF rep M	26,68	0		0	1,04	0	0	0	0	0	0	0	27.72
MB di members N	9,46	5,83	- 1		0	0	0	0	0	0	0	0	15.29
EC N members m	5,16	6,02	1	1	1,45	0		0	0	0	0	0	12.63
Office staff m	2,22	99'0	,	-	2,11		- 17 -	0			0	0,1	5.26
Travel by Air Plane	to GA	to MB	to EC	to COM/WG	to Sports Events	to Trade Shows -	to Office	to SSC	to Sponsorship Meetings	to IF Forum	to Rock Climbing Festivals	conflict,; issues; UNFCCC; Sport Positive Summit)	TOTAL

11 KEY RESOURCES

1

IOC Sustainability Essentials Guide

https://stillmed.olympics.com/media/Document%20Library/OlympicOrg/IOC/What-We-Do/celebrate-olympic-games/Sustainability/sustainability-essentials/SUSTAINABILITY-ESSENTIALS-ISSUE-2.pdf

2

UNFCCC The Path to Climate Neutrality – Measure the Basics https://unfccc.int/sites/default/files/resource/ThePathtoClimateNeutrality-Measure-TheBasics May26.pdf